Individuating Faces and Common Objects Produces Equal Responses in Putative Face-Processing Areas in the Ventral Occipitotemporal Cortex
نویسندگان
چکیده
Controversy surrounds the proposal that specific human cortical regions in the ventral occipitotemporal cortex, commonly called the fusiform face area (FFA) and occipital face area (OFA), are specialized for face processing. Here, we present findings from an fMRI study of identity discrimination of faces and objects that demonstrates the FFA and OFA are equally responsive to processing stimuli at the level of individuals (i.e., individuation), be they human faces or non-face objects. The FFA and OFA were defined via a passive viewing task as regions that produced greater activation to faces relative to non-face stimuli within the middle fusiform gyrus and inferior occipital gyrus. In the individuation task, participants judged whether sequentially presented images of faces, diverse objects, or wristwatches depicted the identical or a different exemplar. All three stimulus types produced equivalent BOLD activation within the FFA and OFA; that is, there was no face-specific or face-preferential processing. Critically, individuation processing did not eliminate an object superiority effect relative to faces within a region more closely linked to object processing in the lateral occipital complex (LOC), suggesting that individuation processes are reasonably specific to the FFA and OFA. Taken together, these findings challenge the prevailing view that the FFA and OFA are face-specific processing regions, demonstrating instead that they function to individuate - i.e., identify specific individuals - within a category. These findings have significant implications for understanding the function of brain regions widely believed to play an important role in social cognition.
منابع مشابه
Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study.
Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we...
متن کاملOBJECT CATEGORIES IN THE HUMAN AND MONKEY 1 Neural representations of faces and body parts in macaque and human cortex: A comparative fMRI study
Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, fMRI studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selec...
متن کاملDissociation of Sensitivity to Spatial Frequency in Word and Face Preferential Areas of the Fusiform Gyrus
Different cortical regions within the ventral occipitotemporal junction have been reported to show preferential responses to particular objects. Thus, it is argued that there is evidence for a left-lateralized visual word form area and a right-lateralized fusiform face area, but the unique specialization of these areas remains controversial. Words are characterized by greater power in the high ...
متن کاملElectrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli.
This and the following two papers describe event-related potentials (ERPs) evoked by visual stimuli in 98 patients in whom electrodes were placed directly upon the cortical surface to monitor medically intractable seizures. Patients viewed pictures of faces, scrambled faces, letter-strings, number-strings, and animate and inanimate objects. This paper describes ERPs generated in striate and per...
متن کاملShort-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2010